Matrices and Determinants - Class XII

Related Questions with Solutions

Questions

Quetion: 01

Let P and Q be 3×3 matrices with $P\neq Q$. If $P^3=Q^3$ and $P^2Q=Q^2P$, then determinant of (P^2+Q^2) is equal to

B. -1

C. -2

D. 1

Solutions

Solution: 01

We have, $P^3 = Q^3$ and $P^2Q = Q^2P$ or $Q^2P = P^2Q$ $\Rightarrow \quad (P^2 + Q^2) P = (Q^2 + P^2) Q$ $\Rightarrow \quad (P^2 + Q^2) P = (P^2 + Q^2) Q$ $\Rightarrow \quad (P^2 + Q^2) (P - Q) = 0$ Now, if $|P^2 + Q^2| \neq O$, then $P^2 + Q^2$ is invertible and hence $P - Q = O \Rightarrow P = Q$, which is a contradiction

Correct Options

Answer:01

Correct Options: A